Report, Design, Loads, and Capacity, MLG

for

Kuchera Defense Systems KnightHawk UAV

by

Ranny Meier – Response Mechanics

1 Contents

2 List of Figures 3 3 Introduction 4 4 References 5 5 Conclusion 5 6 Mass Properties 5 7 Geometry 5 7.1 Geometry of swing strut lever 6 7.2 Tail Down Clearance 8 7.3 Wing Tip Clearance 8 7.3 Wing Tip Clearance 9 8 External Loads 10 8.1 Landing simulation 10 8.2 Bump & Braking simulation 12 9 Interface Loads 12 10 Interface Loads 15 10.2 Strut Leg 15 10.2.1 KA58T321200 Assy, Strut landing event internal load list 17 10.3 Trunnion 17 10.4 Drag Brace 18 10.5 Retraction 19 11 Compression members 22 11.1.1 Trunnion members 22 11.1.2 Compression members 22 <
3 Introduction 4 4 References 5 5 Conclusion 5 6 Mass Properties 5 7 Geometry, of swing strut lever 5 7.1 Geometry of swing strut lever 6 7.2 Tail Down Clearance 8 7.3 Wing Tip Clearance 9 8 External Loads 10 8.1 Landing simulation 10 8.2 Bump & Braking simulation 12 9 Interface Loads 12 10 Interface Loads 12 10 Internal Loads 15 10.1 Configuration 15 10.2 Strut Leg 15 10.3 Trunnion 17 10.4 Drag Brace 18 10.5 Retraction 19 11 Strut Leg 22 11.1.1 Tension members 22 11.1.2 Compression members 22 11.1.3 Rod Ends 22 11.1.4 Axl
4 References 5 5 Conclusion 5 6 Mass Properties 5 7 Geometry 5 7.1 Geometry of swing strut lever 6 7.2 Tail Down Clearance 8 7.3 Wing Tip Clearance 9 8 External Loads 10 8.1 Landing simulation 10 8.2 Bump & Braking simulation 12 9 Interface Loads 12 10 Interface Loads 15 10.1 Configuration 15 10.2 Strut Leg 15 10.2.1 KA58T321200 Assy, Strut landing event internal load list 17 10.3 Trunnion 17 10.4 Drag Brace 18 10.5 Retraction 19 11 Compression members 22 11.1.1 Tension members 22 11.1.2 Compression members 22 11.1.3 Rod Ends 22 11.1.4 Axle fitting 22
5 Conclusion 5 6 Mass Properties 5 7 Geometry 5 7.1 Geometry of swing strut lever 6 7.2 Tail Down Clearance 8 7.3 Wing Tip Clearance 8 7.3 Wing Tip Clearance 9 8 External Loads 10 8.1 Landing simulation 10 8.2 Bump & Braking simulation 12 9 Interface Loads 12 10 Internal Loads 15 10.2 Strut Leg 15 10.2.1 KAS8T321200 Assy, Strut landing event internal load list 15 10.3 Trunnion 17 10.3.1 KA58T321100 Assy, Trunnion landing event internal load list 17 10.4 Drag Brace 18 10.5 Retraction 19 11 Compronent Capacity 21 11.1 Tension members 22 11.1.1 Tension members 22 11.1.2 Compression members 24 11.2.1
6 Mass Properties 5 7 Geometry 5 7.1 Geometry of swing strut lever 6 7.2 Tail Down Clearance 8 7.3 Wing Tip Clearance 9 8 External Loads 10 8.1 Landing simulation 10 8.2 Bump & Braking simulation 10 8.2 Bump & Braking simulation 12 9 Interface Loads 12 10 Interface Loads 12 10 Internal Loads 15 10.2 Strut Leg 15 10.2 Strut Leg 15 10.3 Trunnion 17 10.3.1 KA58T321100 Assy, Trunnion landing event internal load list 17 10.4 Drag Brace 18 10.5 Retraction 19 11 Strut Leg 22 11.1.1 Tension members 22 11.1.2 Compression members 22 11.1.3 Rod Ends 22 11.1.4 Axle fitting 22
7 Geometry 5 7.1 Geometry of swing strut lever 6 7.2 Tail Down Clearance 8 7.3 Wing Tip Clearance 9 8 External Loads 10 8.1 Landing simulation 10 8.2 Bump & Braking simulation 10 8.2 Bump & Braking simulation 12 9 Interface Loads 12 10 Interface Loads 12 10 Interface Loads 15 10.1 Configuration 15 10.2 Strut Leg 15 10.2.1 KA58T321200 Assy, Strut landing event internal load list 15 10.3 Trunnion 17 10.4 Drag Brace 18 10.5 Retraction 19 11 Component Capacity 21 11.1 Trunsion members 22 11.1.1 Tension members 22 11.1.2 Compression members 22 11.1.4 Axle fitting 22 11.1.5 Clevis Joints
7.1 Geometry of swing strut lever 6 7.2 Tail Down Clearance 8 7.3 Wing Tip Clearance 9 8 External Loads 10 8.1 Landing simulation 10 8.2 Bump & Braking simulation 12 9 Interface Loads 12 10 Internal Loads 15 10.1 Configuration 15 10.2 Strut Leg 15 10.2.1 KA58T321200 Assy, Strut landing event internal load list 17 10.3.1 KA58T321100 Assy, Trunnion landing event internal load list 17 10.4 Drag Brace 18 10.5 Retraction 19 11 Component Capacity 21 11.1 Strut Leg 22 11.1.1 Tension members 22 11.1.2 Compression members 22 11.1.3 Rod Ends 22 11.1.4 Axle fitting 22 11.1.5 Clevis Joints 24 11.2.1 Tension members 24
7.2 Tail Down Clearance 8 7.3 Wing Tip Clearance 9 8 External Loads 10 8.1 Landing simulation 10 8.2 Bump & Braking simulation 12 9 Interface Loads 12 10 Interface Loads 12 10 Internal Loads 15 10.1 Configuration 15 10.2 Strut Leg 15 10.2.1 KA58T321200 Assy, Strut landing event internal load list 17 10.3.1 KA58T321100 Assy, Trunnion landing event internal load list 17 10.4 Drag Brace 18 10.5 Retraction 19 11 Component Capacity 21 11.1 Trunnion members 22 11.1.2 Compression members 22 11.1.3 Rod Ends 22 11.1.4 Axle fitting 22 11.1.5 Clevis Joints 24 11.2.2 Compression members 24 11.2.3 Clevis Joints 24
7.3 Wing Tip Clearance 9 8 External Loads 10 8.1 Landing simulation 10 8.2 Bump & Braking simulation 12 9 Interface Loads 12 10 Internal Loads 12 10 Interface Loads 12 10 Internal Loads 15 10.1 Configuration 15 10.2 Strut Leg 15 10.2.1 KA58T321200 Assy, Strut landing event internal load list 15 10.3 Trunnion 17 10.3.1 KA58T321100 Assy, Trunnion landing event internal load list 17 10.4 Drag Brace 18 10.5 Retraction 19 11 Component Capacity 21 11.1 Trunsion members 22 11.1.1 Tension members 22 11.1.2 Compression members 22 11.1.3 Rod Ends 22 11.1.4 Axle fitting 22 11.1.5 Clevis Joints 24 11.2.1
8 External Loads 10 8.1 Landing simulation 10 8.2 Bump & Braking simulation 12 9 Interface Loads 12 10 Internal Loads 12 10 Internal Loads 15 10.1 Configuration 15 10.2 Strut Leg 15 10.3 Trunnion 17 10.3.1 KA58T321100 Assy, Strut landing event internal load list 17 10.4 Drag Brace 18 10.5 Retraction 19 11 Component Capacity 21 11.1 Trunsion members 22 11.1.1 Tension members 22 11.1.3 Rod Ends 22 11.1.4 Axle fitting 22 11.1.5 Clevis Joints 24 11.2 Trunnion 24 11.2.1 Tension members 24 11.2.1 Tension members 24 11.2.2 Compression members 24 11.2.1 Tension members 24
8.1 Landing simulation 10 8.2 Bump & Braking simulation 12 9 Interface Loads 12 10 Internal Loads 15 10.1 Configuration 15 10.2 Strut Leg 15 10.2.1 KA58T321200 Assy, Strut landing event internal load list 15 10.3 Trunnion 17 10.3.1 KA58T321100 Assy, Trunnion landing event internal load list 17 10.4 Drag Brace 18 10.5 Retraction 19 11 Component Capacity 21 11.1 Strut Leg 22 11.1.1 Tension members 22 11.1.2 Compression members 22 11.1.3 Rod Ends 22 11.1.4 Axle fitting 22 11.1.5 Clevis Joints 24 11.2 Trunnion 24 11.2.1 Tension members 24 11.2.2 Compression members 24 11.2.1 Tension members 24 11.2.1
8.2 Bump & Braking simulation 12 9 Interface Loads 12 10 Internal Loads 15 10.1 Configuration 15 10.2 Strut Leg 15 10.3 Trunnion 15 10.3.1 KA58T321200 Assy, Strut landing event internal load list 17 10.3.1 KA58T321100 Assy, Trunnion landing event internal load list 17 10.4 Drag Brace 18 10.5 Retraction 19 11 Component Capacity 21 11.1 Strut Leg 22 11.1.1 Tension members 22 11.1.2 Compression members 22 11.1.3 Rod Ends 22 11.1.4 Axle fitting 22 11.1.5 Clevis Joints 24 11.2 Trunnion 24 11.2.1 Tension members 24 11.2.2 Compression members 24 11.2.3 Clevis Joints 24
9 Interface Loads. 12 10 Internal Loads 15 10.1 Configuration 15 10.2 Strut Leg 15 10.3 Trunnion 15 10.3 Trunnion 17 10.3.1 KA58T321100 Assy, Strut landing event internal load list 17 10.4 Drag Brace 18 10.5 Retraction 19 11 Component Capacity 21 11.1 Tension members 22 11.1.1 Tension members 22 11.1.3 Rod Ends 22 11.1.4 Axle fitting 22 11.1.5 Clevis Joints 24 11.2 Trunnion 24 11.2.1 Tension members 24 11.2.2 Compression members 24 11.2.1 Tension members 24 11.2.2 Compression members 24 11.2.3 Clevis Joints 24 11.2.3 Clevis Joints 24
10 Internal Loads 15 10.1 Configuration 15 10.2 Strut Leg 15 10.2.1 KA58T321200 Assy, Strut landing event internal load list 15 10.3 Trunnion 17 10.3.1 KA58T321100 Assy, Trunnion landing event internal load list 17 10.3.1 KA58T321100 Assy, Trunnion landing event internal load list 17 10.4 Drag Brace 18 10.5 Retraction 19 11 Component Capacity 21 11.1 Tension members 22 11.1.2 Compression members 22 11.1.3 Rod Ends 22 11.1.4 Axle fitting 22 11.1.5 Clevis Joints 24 11.2 Trunnion 24 11.2.1 Tension members 24 11.2.2 Compression members 24 11.2.1 Tension members 24 11.2.2 Compression members 24 11.2.3 Clevis Joints 24
10.1 Configuration 15 10.2 Strut Leg 15 10.2.1 KA58T321200 Assy, Strut landing event internal load list 15 10.3 Trunnion 17 10.3.1 KA58T321100 Assy, Trunnion landing event internal load list 17 10.3.1 KA58T321100 Assy, Trunnion landing event internal load list 17 10.4 Drag Brace 18 10.5 Retraction 19 11 Component Capacity 21 11.1 Strut Leg 22 11.1.1 Tension members 22 11.1.2 Compression members 22 11.1.3 Rod Ends 22 11.1.4 Axle fitting 22 11.1.5 Clevis Joints 24 11.2 Trunnion 24 11.2.1 Tension members 24 11.2.2 Compression members 24 11.2.1 Tension members 24 11.2.2 Compression members 24 11.2.3 Clevis Joints 24
10.2 Strut Leg 15 10.2.1 KA58T321200 Assy, Strut landing event internal load list 15 10.3 Trunnion 17 10.3.1 KA58T321100 Assy, Trunnion landing event internal load list 17 10.4 Drag Brace 18 10.5 Retraction 19 11 Component Capacity 21 11.1 Strut Leg 22 11.1.1 Tension members 22 11.1.2 Compression members 22 11.1.3 Rod Ends 22 11.1.4 Axle fitting 22 11.1.5 Clevis Joints 24 11.2 Trunnion 24 11.2 Town members 24 11.2 Compression members 24 11.2 Trunnion 24 11.2 Trunnion 24 11.2 Compression members 24 11.2 Trunnion 24 11.2 Trunnion 24 11.2 Tension members 24 11.2.1 Tension members
10.2.1 KA58T321200 Assy, Strut landing event internal load list
10.3 Trunnion 17 10.3.1 KA58T321100 Assy, Trunnion landing event internal load list 17 10.4 Drag Brace 18 10.5 Retraction 19 11 Component Capacity 21 11.1 Strut Leg 22 11.1.1 Tension members 22 11.1.2 Compression members 22 11.1.3 Rod Ends 22 11.1.4 Axle fitting 22 11.1.5 Clevis Joints 24 11.2 Trunnion 24 11.2.1 Tension members 24 11.2.2 Compression members 24 11.2.3 Clevis Joints 24 11.2.1 Tension members 24 11.2.2 Compression members 24 11.2.3 Clevis Joints 24
10.3.1 KA58T321100 Assy, Trunnion landing event internal load list
10.4 Drag Brace 18 10.5 Retraction 19 11 Component Capacity 21 11.1 Strut Leg 22 11.1.1 Tension members 22 11.1.2 Compression members 22 11.1.3 Rod Ends 22 11.1.4 Axle fitting 22 11.1.5 Clevis Joints 24 11.2 Trunnion 24 11.2.1 Tension members 24 11.2.2 Compression members 24 11.2.3 Clevis Joints 24 11.2.3 Clevis Joints 24
10.5 Retraction
11 Component Capacity
11.1 Strut Leg 22 11.1.1 Tension members 22 11.1.2 Compression members 22 11.1.3 Rod Ends 22 11.1.4 Axle fitting 22 11.1.5 Clevis Joints 24 11.2 Trunnion 24 11.2.1 Tension members 24 11.2.2 Compression members 24 11.2.3 Clevis Joints 24 11.2.3 Clevis Joints 24
11.1.1 Tension members 22 11.1.2 Compression members 22 11.1.3 Rod Ends 22 11.1.4 Axle fitting 22 11.1.5 Clevis Joints 24 11.2 Trunnion 24 11.2.1 Tension members 24 11.2.2 Compression members 24 11.2.3 Clevis Joints 24
11.1.2 Compression members 22 11.1.3 Rod Ends 22 11.1.4 Axle fitting 22 11.1.5 Clevis Joints 24 11.2 Trunnion 24 11.2.1 Tension members 24 11.2.2 Compression members 24 11.2.3 Clevis Joints 24
11.1.3 Rod Ends 22 11.1.4 Axle fitting 22 11.1.5 Clevis Joints 24 11.2 Trunnion 24 11.2.1 Tension members 24 11.2.2 Compression members 24 11.2.3 Clevis Joints 24
11.1.4 Axle fitting
11.1.5Clevis Joints2411.2Trunnion2411.2.1Tension members2411.2.2Compression members2411.2.3Clevis Joints25
11.2 Trunnion 24 11.2.1 Tension members 24 11.2.2 Compression members 24 11.2.3 Clevis Joints 25
11.2.1Tension members2411.2.2Compression members2411.2.3Clevis Joints25
11.2.2 Compression members
11.2.3 Clevis Joints
11.3 KA58T321600 Trunnion Support Assy 26
11.3.1 Shock mount clevis joint 27
11.4 KA58T321250 Shock Absorber 27
11.4.1 Shim stack and bleed hole adjustments 27
11.4.2 Oil level and initial gas pressure adjustments 30
11.4.2 On level and initial gas pressure adjustments
11.5 Drag Brace 32
11.6 Retraction Actuator 32
11.7 Material Properties 33
11 7 1 AISI 4130 Properties 33
11 7 2 Aluminum 7075-T7351 Properties 34

2 List of Figures

Figure 1 Ten MLG sub-assemblies	.4
Figure 2 Swing strut lever geometry	. 6
Figure 3 Ratio of Shock Force to vertical ground force at tire contact	. 7
Figure 4 Ratio of shock piston velocity to vehicle sink rate	. 7
Figure 5 Tail Down Ground Lines	. 8
Figure 6 Available Tail Down Angle vs Ground WL	. 8
Figure 7 Wing Tip clearance	. 9
Figure 8 Plot: Force at ground contact vs Tire Stroke for list of initial gas pressures	10
Figure 9 Shock dynamic load / stroke	11
Figure 10 Airframe dynamic landing response	11
Figure 11 Bump shape	12
Figure 12 Aft direction reaction for bump	12
Figure 13 KA58T321030 Bulkhead / Trunnion interface fitting	14
Figure 14 KA58T321200 Strut lever assy element numbers	15
Figure 15 KA58T321100 Trunnion assy element numbers	17
Figure 16 Retract mechanism geometry	20
Figure 17 Actuator load / stroke	21
Figure 18 Element 18 strut tube strength	22
Figure 19 Element 17 strut tube strength	22
Figure 20 Axle fitting stress result	23
Figure 21 Element 1041 trunnion fitting tube strength	24
Figure 22 Element 1040 trunnion fitting tube strength	24
Figure 23 Trunnion and Shock mount clevis joints	26
Figure 24 Shock upper clevis joint strength	27
Figure 25 Digressive preloaded valve shim force / velocity plot	27
Figure 26 Digressive (compression) / Linear (rebound) shim stack	28
Figure 27 Landing response with preloaded shims	28
Figure 28 Air Shock 2.0 (1.24 shaft) dyno result	29
Figure 29 Dyno result for 2.0 Fox Shox w/ preloaded comp shim stack	30
Figure 30 Fox 2.0 (0.625 dia shaft) compression dyno results	30
Figure 31 Fox 2.0 (0.625 dia shaft) rebound dyno results	31
Figure 32 Protective accordion boots for shock and actuator	31
Figure 33 Peak design stress in Aft Drag Brace	32
Figure 34 AISI 4130 Properties	33
Figure 35 Aluminum 7075-T7351 Properties	34

3 Introduction

We optimized the pivot locations of the links in the assembly to provide the best wheel travel, and minimum weight assembly, within the envelope available. We selected a few critical locations in the assembly where we list the capacity of components. The shocks are 5 way adjustable; oil viscosity, oil level, gas pressure, and compression and rebound side shim stacks.

Figure	1	Ten	MLG	sub-assemb	lies
riguit		IUI	MLO	Sub-assem	nc ₅

ItemNo	AssyNo	Description
1	KA58T321600	Assy, Support, Drive Trunnion
2	KA58T321100	Assy, Drive Trunnion, Main Gear
3	KA58T321200	Assy, Strut, Main Gear, Left Hand
4	KA58T321250	Gas and Oil Shock Absorber
5	KA58T321400	Assy, Brace, Aft, Main Gear
6	KA58T321420	Assy, Brace, Fwd, Main Gear
7	7828568	PPA 24 volt, 4 inch stroke, 1.1 in/sec, limit switch
8	KA58T321500	Assy, Support, Actuator and Brace
9	KA58T321300	Assy, Strut, Main Gear, Right Hand
10	KA58T321030	Assy, Ftg, Insert, Fuselage, Trunnion

Protective boots, not shown in Figure 1, are provided for the shock and actuator shafts (shown in Figure 32 on page 31).

4 References

5 Conclusion

This Main Landing Gear (MLG) system utilizes a pair of adjustable Gas over Oil shock absorbers (OLEO). This allows the necessary setup changes to be done using the same hardware for a wide weight range for the aircraft.

PartNo	Description	M.S.	Failure	Stress	Page
			Mode	(ksi)	
KA58T321215	Tube, Strut, Fwd Lwr	0.08	Tension	116.0	22
KA58T321214	Tube, Strut, Fwd Upr	0.62	Compress	77.0	22
KA58T321214	Tube, Strut, Fwd Upr	0.91	Buckle		22
KA58T321211	Socket, Axle	0.13	Bending	111.0	23
KA58T321116	Tube, Fwd, Trunnion, Right Hand	0.45	Tension	86.0	24
KA58T321117	Tube, Aft, Trunnion, Right Hand	0.62	Compress	77.0	24
KA58T321117	Tube, Aft, Trunnion, Right Hand	4.11	Buckle		24
KA58T321113	Fitting, Clevis, Knee - Lugs	1.37	Tension		25
KA58T321113	Fitting, Clevis, Knee - Bolt	0.42	Bending		25
KA58T321111	Fitting, Clevis, Left Hand - Lugs	2.0	Tension		25
KA58T321111	Fitting, Clevis, Left Hand - Bolt	1.87	Bending		25
KA58T321601	Support, Drive Trunnion - Lugs	1.62	Tension		27
KA58T321601	Support, Drive Trunnion - Bolt	1.04	Bending		27

|--|

6 Mass Properties

Mass = 45.1012 pounds at gear down position. Center of mass: (inches) in aircraft coordinates

> X = 178.4327Y = -0.0039Z = 80.4355

7 Geometry

7.1 Geometry of swing strut lever

The strut leg is made as long as possible to fit in the available retracted position envelope. Then the static ground position of the tire is positioned at 27" out from BL0 to provide a minimum required roll-over angle.

Figure 3 Ratio of Shock Force to vertical ground force at tire contact

Figure 4 Ratio of shock piston velocity to vehicle sink rate

7.2 Tail Down Clearance

7.3 Wing Tip Clearance

Figure 7 Wing Tip clearance

Referring to Figure 8 on page 10 we see that this 5" of wheel travel that happens before the wing tip touches will increase the ground force at the tire by 125 lbf which ratios to 32 lbf required at the wing tip to hold it down to the ground. This does not happen suddenly due to wind gust because the preloaded digressive shims used in the shock absorber valves (described in §11.4.1 on page 27) keep the gear hydraulically locked in position except for slow static balancing motion that happens as oil moves through slow speed bleed holes in the shock piston.

This plot in Figure 8 shows Tire Ground Force vs Tire Stroke for a family if initial gas $P_S^{T} = (170 \ 190 \ 210 \ 230 \ 250 \ 270 \ 290)$. For example an aircraft with weight such that 400 lb is supported by MLG can have the ground line height adjusted from 71.5" to 64.0" by increasing the initial shock gas pressure from 180 psi to 300 psi. We see in Figure 6 on page 8 that this additional 7.5" of ground clearance can amount to an additional 8 deg of tail down angle before touching aft propeller to ground.

Figure 8 Plot: Force at ground contact vs Tire Stroke for list of initial gas pressures

8 External Loads

The peak load during landing is at the time when the shock is fully compressed and sink rate reaches zero. For a hard landing the force in the shock will be at 2000 lbf. A hypothetical worse case could be having a brake locked up or running over a bump at the same time. To simplify sizing these strut legs we apply a vertical force where the tire meets the ground such that there is 2000 lbf in the shock and then put an aft direction force at the tire patch equal to 0.8 times the vertical force. These are 772.5 lbf +Z vertical and 618.0 lbf +X aft.

8.1 Landing simulation

We use a small time step method to plot the displacement, velocity, acceleration, and force while balancing these non-linear stiffness and dampening forces at each time step.

Figure 10 Airframe dynamic landing response

8.2 Bump & Braking simulation

Figure 11 Bump shape

Figure 12 Aft direction reaction for bump

We are using 0.8 * vertical force in the aft direction for Braking Force.

9 Interface Loads

```
Table 2 Interface load Node airframe coordinates
```

ID	FS	BL	WL	
1	170.0	-27.0	68.5	:= Tire / Ground contact - Left Hand
23	170.0	27.0	68.5	:= Tire / Ground contact - Right Hand
400	187.1153	-2.1265	97.3308	:= Actuator mount - Fwd Left Hand
404	187.1153	2.1265	97.3308	:= Actuator mount - Fwd Right Hand
405	191.6893	2.1265	97.3308	:= Actuator mount = Aft Right Hand
408	191.6893	-2.1265	97.3308	:= Actuator mount - Aft Left Hand
412	169.56	0.0	90.1	:= Trunnion Mount interface point

Table 3 Airframe Interface Loads

Node 1 := Tire / Ground	l contact – Left Hand	
Output Vector 1	- Total Translation	= 1.658
Output Vector 2	- T1 Translation	= 1.6246
Output Vector 3	- T2 Translation	= -0.25697
Output Vector 4	- T3 Translation	= 0.20885
Output Vector 5	- Total Rotation	= 0.17221
Output Vector 6	- P1 Potation	0 040633
Output Vector 7	- P2 Potation	0 16609
Output Vector /	- KZ KOLALION	- 0.011102
Output vector 8	- RS ROLALION	= 0.011102
Output Vector 41	- Total Applied Force	= 989.283
Output Vector 42	- Tl Applied Force	= 618.
Output Vector 43	- T2 Applied Force	= 0.
Output Vector 44	- T3 Applied Force	= 772.5
Node 23 := Tire / Groun	d contact - Right Hand	
Output Vector 1	- Total Translation	= 0.29871
Output Vector 2	- T1 Translation	= 0.15349
Output Vector 3	- T2 Translation	= 0.16367
Output Vector 4	- T3 Translation	= 0.19717
Output Vector 5	- Total Rotation	= 0.040555
Output Vector 6	- Bl Botation	= 0.029554
Output Vector 7	- R2 Rotation	= -0.020916
Output Vector 8	- P3 Potation	- 0 01827
Output Vector 0	- Total Applied Force	- 772 5
Output Vector 41	- Iotal Applied Force	- //2.5
Output Vector 42	- TI Applied Force	= 0.
Output Vector 43	- T2 Applied Force	= 0.
Output Vector 44	- T3 Applied Force	= 1/2.5
Node 400 := Actuator mo	ount - Fwd Left Hand	
Output Vector 51	- Total Constraint Force	= 761.726
Output Vector 52	- T1 Constraint Force	= -600.649
Output Vector 53	- T2 Constraint Force	= -282.708
Output Vector 54	- T3 Constraint Force	= 373.527
-		
Node 408 := Actuator mc	ount - Aft Left Hand	
Output Vector 51	- Total Constraint Force	= 1222.15
Output Vector 52	- T1 Constraint Force	= -406784
Output Vector 53	- T2 Constraint Force	= 626 3
Output Vector 54	- T3 Constraint Force	967 / 35
Output Vector 54	15 COnstraint Force	- 907.435
Node 405 - Detuctor me	unt - Aft Dight Hand	
Node 405 :- Actualor mo	Mult - Alt Right Hand	007 405
Output Vector 51	- Total Constraint Force	= 827.495
Output Vector 52	- TI Constraint Force	= -99./364
Output Vector 53	- T2 Constraint Force	= -534.767
Output Vector 54	- T3 Constraint Force	= -623.558
Node 404 := Actuator mo	ount - Fwd Right Hand	
Output Vector 51	- Total Constraint Force	= 559.235
Output Vector 52	- T1 Constraint Force	= -405.889
Output Vector 53	- T2 Constraint Force	= 232.436
Output Vector 54	- T3 Constraint Force	= 306.547
Node 412 := Trunnion Mo	ount interface point	
Output Vector 51	- Total Constraint Force	= 1097.68
Output Vector 52	- T1 Constraint Force	= 895.058
Output Vector 53	- T2 Constraint Force	= -41 2605
Output Voctor 54	- T3 Constraint Force	= -634 081
Output Vector 55	- Total Constraint Moment	-16850 2
Output Vector 55	- Pl Constraint Marant	200 /7/
Output Vector 56	- KI Constraint Moment	290.4/4
Output Vector 57	- R2 Constraint Moment	= 1098.99
Output Vector 58	– RJ Constraint Moment	= -10/01.8

Figure 13 KA58T321030 Bulkhead / Trunnion interface fitting

Two facing mirror image plates, with integral cylindrical bosses can be bonded into the bulkhead sandwich structure, one from aft and one from fwd sides, where the MLG trunnion interfaces. The larger diameter portion of these cylindrical bosses will interface with a c-bore of the same diameter cut into the laminate while the smaller diameter portion protrudes through the core.

We should allow for 400 lbf bearing shear force at any one interface boss, until possibly a more refined stress model is done that includes the bulkhead sandwich structure in the model. The expoxy adhesive should provide a minimum 10ksi ultimate bearing stress capacity.

10 Internal Loads

10.1 Configuration

10.2 Strut Leg

Figure 14 KA58T321200 Strut lever assy element numbers

10.2.1 KA58T321200 Assy, Strut landing event internal load list

The peak forces (lbf) and moments (in-lbf) in these members during the landing event are listed here.

```
List Output Query
Element 13
Output Set 8 - T1nDspc 772.5Up 618.0Aft
```

Output Vector 3014- Beam EndA Plane1 Moment= 133.479Output Vector 3015- Beam EndA Plane2 Moment= 58.7876Output Vector 3016- Beam EndB Plane1 Moment= 2.3195Output Vector 3017- Beam EndB Plane2 Moment= 300.239Output Vector 3018- Beam EndA Pl1 Shear Force= 12.0745Output Vector 3019- Beam EndA Pl2 Shear Force= -22.228Output Vector 3024- Beam EndA Torque Force= 6.15801 Element 14 Output Set 8 - TlnDspc 772.5Up 618.0Aft utput Set 8 - TinDspc //2.50p 618.0AftOutput Vector 3014- Beam EndA Plane1 Moment = -148.544Output Vector 3015- Beam EndA Plane2 Moment = 176.925Output Vector 3016- Beam EndB Plane1 Moment = -68.7482Output Vector 3017- Beam EndB Plane2 Moment = 110.182Output Vector 3018- Beam EndA Pl1 Shear Force = -7.42945Output Vector 3019- Beam EndA Pl2 Shear Force = 6.21418Output Vector 3024- Beam EndA Torque Force = -18.2012 Element 17 Output Set 8 - TlnDspc 772.5Up 618.0Aft utput Set 8 - TINDspc //2.5Up 618.0AftOutput Vector 3014- Beam EndA Planel Moment = -192.752Output Vector 3015- Beam EndA Plane2 Moment = 53.1972Output Vector 3016- Beam EndB Plane1 Moment = -246.843Output Vector 3017- Beam EndB Plane2 Moment = 295.988Output Vector 3018- Beam EndA Pl1 Shear Force = 5.14122Output Vector 3019- Beam EndA Pl2 Shear Force = -23.0766Output Vector 3024- Beam EndA Torque Force = 0.80322 Element 18 Output Set 8 - TlnDspc 772.5Up 618.0Aft utput Set 8 - TINDspc //2.50p 618.0AftOutput Vector 3014- Beam EndA Planel Moment = 241.002Output Vector 3015- Beam EndA Plane2 Moment = 193.433Output Vector 3016- Beam EndB Plane1 Moment = 195.879Output Vector 3017- Beam EndB Plane2 Moment = 92.5936Output Vector 3018- Beam EndA Pl1 Shear Force = 4.3472Output Vector 3019- Beam EndA Pl2 Shear Force = 9.71495Output Vector 3022- Beam EndA Axial Force = 5299.27Output Vector 3024- Beam EndA Torque Force = -15.2536 Element 24 Output Set 8 - TlnDspc 772.5Up 618.0Aft Output Vector 3016- Beam EndB Planel Moment= 202.157Output Vector 3017- Beam EndB Plane2 Moment= 34.1286Output Vector 3020- Beam EndB Pl1 Shear Force= -168.464Output Vector 3021- Beam EndB Pl2 Shear Force= -28.4405Output Vector 3023- Beam EndB Axial Force= -2101.46 Element 25 Output Set 8 - TlnDspc 772.5Up 618.0Aft Output Vector 3016- Beam EndB Planel Moment= -799.533Output Vector 3017- Beam EndB Plane2 Moment= -23.8799Output Vector 3020- Beam EndB Pl1 Shear Force= 666.276Output Vector 3021- Beam EndB Pl2 Shear Force= 19.8999Output Vector 3023- Beam EndB Axial Force= 3410.37 Element 34 Output Set 8 - TlnDspc 772.5Up 618.0Aft Output Vector 3014- Beam EndA Planel Moment= -3324.61Output Vector 3015- Beam EndA Plane2 Moment= 2659.69Output Vector 3016- Beam EndB Plane1 Moment= -2758.6

Output Vector	3017	-	Beam	EndB	Plar	ne2 Mor	nent	=	2206.88
Output Vector	3018	-	Beam	EndA	Pl1	Shear	Force	=	-772.5
Output Vector	3019	-	Beam	EndA	P12	Shear	Force	=	618.
Output Vector	3024	-	Beam	EndA	Tord	que Foi	cce	=	2162.38

10.3 Trunnion

Figure 15 KA58T321100 Trunnion assy element numbers

10.3.1 KA58T321100 Assy, Trunnion landing event internal load list

The peak forces (lbf) and moments (in-lbf) in these members during the landing event are listed here.

```
List Output Query
Element 1010
Output Set 8 - T1nDspc 772.5Up 618.0Aft
```

```
Output Vector 3014
                                                                                                     - Beam EndA Plane1 Moment = 144.319
             Output Vector 3014- Beam EndA Planel Moment= 144.319Output Vector 3015- Beam EndA Plane2 Moment= 286.682Output Vector 3016- Beam EndB Plane1 Moment= -3.5104Output Vector 3017- Beam EndB Plane2 Moment= -322.958Output Vector 3018- Beam EndA Pl1 Shear Force= 14.8402Output Vector 3019- Beam EndA Pl2 Shear Force= 61.2001Output Vector 3022- Beam EndA Axial Force= 2493.56Output Vector 3024- Beam EndA Torque Force= -147.027
Element 1011
       Output Set 8 - TlnDspc 772.5Up 618.0Aft
             utput Set 8 - TINDspc 772.50p 618.0AftOutput Vector 3014- Beam EndA Plane1 Moment = 93.3932Output Vector 3015- Beam EndA Plane2 Moment = 351.37Output Vector 3016- Beam EndB Plane1 Moment = -274.383Output Vector 3017- Beam EndB Plane2 Moment = -376.068Output Vector 3018- Beam EndA Pl1 Shear Force = 39.3709Output Vector 3019- Beam EndA Pl2 Shear Force = 77.8733Output Vector 3022- Beam EndA Axial Force = -725.592Output Vector 3024- Beam EndA Torque Force = -143.82
Element 1040
        Output Set 8 - TlnDspc 772.5Up 618.0Aft
             utput Set 8 - TINDSpc //2.5Up 618.0AftOutput Vector 3014- Beam EndA Planel Moment = 71.8801Output Vector 3015- Beam EndA Plane2 Moment = 322.893Output Vector 3016- Beam EndB Plane1 Moment = -404.555Output Vector 3017- Beam EndB Plane2 Moment = -356.142Output Vector 3018- Beam EndA Pl1 Shear Force = 47.828Output Vector 3019- Beam EndA Pl2 Shear Force = 68.1665Output Vector 3022- Beam EndA Axial Force = -2918.43Output Vector 3024- Beam EndA Torque Force = -128.392
Element 1041
       Output Set 8 - TlnDspc 772.5Up 618.0Aft
             Output Set 8 - TINDSpc 7/2.50p 618.0AFtOutput Vector 3014Output Vector 3015Output Vector 3016Output Vector 3016Output Vector 3017Output Vector 3018Output Vector 3018Output Vector 3019Output Vector 3019Output Vector 3022Output Vector 3024Output Vector 3024Output Vector 3024
```

10.4 Drag Brace

```
Element 1017

Output Set 8 - T1nDspc 772.5Up 618.0Aft

Output Vector 3015 - Beam EndA Plane2 Moment = 1674.86

Output Vector 3019 - Beam EndA Pl2 Shear Force = 323.839

Output Vector 3022 - Beam EndA Axial Force = -1736.87
```

The peak design compression force in this drag brace is 1737 lbf and the out-of-plane moment at the center hinge clevis joint is 1675 in*lbf.

10.5 Retraction

Figure 16 Retract mechanism geometry

This MLG actuator strokes 3.85" during gear retraction (and extension). Actuator speeds are available between 0.4 in/sec and 1.1 in/sec which corresponds to 9.6 sec and 3.5 sec to retract the gear. The slower speed actuator has twice the dynamic load capability; 1500 lbf & 750 lbf respectively.

Figure 17 contains a plot of this actuator load/stroke for 1g down with and without air drag force on the gear. Air drag is conservatively estimated as if a flat plate was attached to the front of the gear legs while they extend and retract. The CD is a constant 1.17 from gear full down until about 45 deg retracted where the CD jumps to about 1.6 because the back side turbulence is shed, and then the CD drops to zero as the gear approaches fully retracted. The F_{act} curve is actuator force due to 1g down only and the FactTotal curve is the 1g down and wind combined.

kt :=
$$1.6896 \cdot \frac{\text{ft}}{\text{sec}}$$
 $V_{\text{ge}} := 70 \cdot \text{kt}$ $\rho := 0.002378 \cdot \frac{\text{stug}}{\text{ft}^3}$ $q := \frac{\rho \cdot V_{\text{ge}}^2}{2}$ $q = 0.11550034 \text{ psi}$

The actuator force can be anywhere from 450 lbf (tension) to -350 lbf (compression) during gear retract and extend at a 1g down condition. However the wind drag estimate is easily double what it could be and therefore the wind and gravity could easily just cancel out and there be very little actuator force near the middle of the stroke. Possibly a record of the current draw will indicate the actual values during flight test.

Actuator Load/Stroke

Figure 17 Actuator load / stroke

The M_{grav} curve is the trunnion moment due to 1g down and the M_{air} curve is the negative of the trunnion moment due to wind. The trunnion angle 0 is gear down and trunnion angle 103 is gear up.

11 Component Capacity

11.1 Strut Leg

These stress results are based on loads listed in §10.2.1.

11.1.1 Tension members

$$\begin{aligned} \text{Torque} &:= -15.20 \text{in} \cdot \text{lbf} \quad F_{axial} := 5299.27 \text{lbf} & \text{Moment} := \sqrt{241^2 + 193^2} \cdot \text{in} \cdot \text{lbf} \\ \text{OD} &:= 0.625 \text{in} \quad t_{wall} := 0.035 \text{in} \quad r := \frac{\text{OD}}{2} \\ \tau &:= \frac{\text{Torque}}{2 \cdot \pi \cdot r^2 \cdot t_{wall}} & \tau = -707.776 \times 10^0 \text{ psi} \quad \sigma_a := \frac{\text{Faxial}}{\pi \cdot \left[r^2 - \left(r - t_{wall}\right)^2\right]} & \sigma_a = 81.686 \times 10^3 \text{ psi} \\ \text{I} &:= \frac{\pi \cdot \left[r^4 - \left(r - t_{wall}\right)^4\right]}{4} & \sigma_b := \frac{\text{Moment} \cdot r}{1} & \sigma_b = 34.061 \times 10^3 \text{ psi} & \sigma_b + \sigma_a = 115.747 \times 10^3 \text{ psi} \end{aligned}$$

Figure 18 Element 18 strut tube strength

11.1.2 Compression members

$$Torque := 0.80 \text{ in lbf} \qquad F_{\text{maximal}} := -2245 \text{ lbf} \qquad \text{Moment} := \sqrt{247^2 + 296^2} \cdot \text{in lbf}$$

$$OD := 0.625 \text{ in } t_{\text{maximal}} := 0.035 \text{ in } r_{\text{i}} := \frac{\text{OD}}{2} \qquad \text{E} := 3010^6 \cdot \text{psi} \qquad \text{Len} := 14 \text{ in}$$

$$\tau := \frac{\text{Torque}}{2 \cdot \pi \cdot r^2 \cdot t_{\text{wall}}} \qquad \tau = 37.251 \times 10^9 \text{ psi} \qquad \sigma_{\text{a}} := \frac{\text{Faxial}}{\pi \cdot \left[r^2 - \left(r - t_{\text{wall}}\right)^2\right]} \qquad \sigma_{\text{a}} = -34.606 \times 10^3 \text{ psi}$$

$$I_{\text{i}} := \frac{\pi \cdot \left[r^4 - \left(r - t_{\text{wall}}\right)^4\right]}{4} \qquad \sigma_{\text{b}} := \frac{\text{Moment} \cdot r}{1} \qquad \sigma_{\text{b}} = 42.529 \times 10^3 \text{ psi} \qquad \sigma_{\text{b}} + \left|\sigma_{\text{a}}\right| = 77.135 \times 10^3 \text{ psi}$$

$$P_{\text{cr}} := \frac{\pi^2 \cdot \text{E-I}}{\text{Len}^2} \qquad P_{\text{cr}} = 4.279 \times 10^3 \text{ lbf}$$

Figure 19 Element 17 strut tube strength

11.1.3 Rod Ends

11.1.4 Axle fitting

Figure 20 Axle fitting stress result

11.1.5 Clevis Joints

11.2 Trunnion

Г

These stress results are based on loads listed in §10.3.1.

11.2.1 Tension members

Torque := -122 in lbf
$$F_{axial}$$
 := 4249 lbf $Moment$:= $\sqrt{371^2 + 210^2}$ in lbf
OD := 0.75 in t_{wall} := 0.035 in r_{c} := $\frac{OD}{2}$ E_{c} := 3010⁶ · psi Len := 10 in
 τ_{c} := $\frac{Torque}{2 \cdot \pi \cdot r^2 \cdot t_{wall}}$ $\tau = -3.945 \times 10^3 \text{ psi}$ σ_{ax} := $\frac{F_{axial}}{\pi \cdot \left[r^2 - (r - t_{wall})^2\right]}$ $\sigma_{a} = 54.046 \times 10^3 \text{ psi}$
 I_{c} := $\frac{\pi \cdot \left[r^4 - (r - t_{wall})^4\right]}{4}$ σ_{bx} := $\frac{Moment \cdot r}{I}$ $\sigma_{b} = 31.745 \times 10^3 \text{ psi}$
 $\sigma_{c} = 85.791 \times 10^3 \text{ psi}$

Figure 21 Element 1041 trunnion fitting tube strength

11.2.2 Compression members

$$\begin{split} \text{Torque} &:= -128 \text{ in } \text{lbf} \quad F_{axial} := -2918 \text{lbf} \quad \text{Moment} := \sqrt{405^2 + 356^2} \cdot \text{in } \text{lbf} \\ \text{OD} &:= 0.75 \text{ in} \quad t_{wall} := 0.035 \text{ in} \quad r := \frac{\text{OD}}{2} \quad E := 30 \, 10^6 \cdot \text{psi} \quad \text{Len} := 10 \text{ in} \\ \tau &:= \frac{\text{Torque}}{2 \cdot \pi \cdot r^2} \cdot t_{wall} \quad \tau = -4.139 \times 10^3 \text{ psi} \quad \sigma_a := \frac{\text{Faxial}}{\pi \cdot \left[r^2 - \left(r - t_{wall}\right)^2\right]} \quad \sigma_a = -37.116 \times 10^3 \text{ psi} \\ \text{I} &:= \frac{\pi \cdot \left[r^4 - \left(r - t_{wall}\right)^4\right]}{4} \quad \sigma_b := \frac{\text{Moment} \cdot r}{\text{I}} \quad \sigma_b = 40.153 \times 10^3 \text{ psi} \\ \sigma_c &:= \sigma_b + \left|\sigma_a\right| \quad \sigma_c = 77.269 \times 10^3 \text{ psi} \\ \text{P}_{cr} &:= \frac{\pi^2 \cdot \text{E-I}}{\text{Len}^2} \quad \text{P}_{cr} = 14.911 \times 10^3 \text{ lbf} \end{split}$$

Figure 22 Element 1040 trunnion fitting tube strength

11.2.3 Clevis Joints

11.2.3.1 KA58T321113 Knee Fitting

11.2.3.2 KA58T321111 Clevis Fitting

List Output Query Element 1008 - Trunnion / Trunnion mount clevis ftg Output Set 8 - TinDspc 772.5Up 618.0Aft Output Vector 3018 - Beam EndA Pl1 Shear Force = -1301.83 Output Vector 3019 - Beam EndA Pl2 Shear Force = -1403.62 Output Vector 3022 - Beam EndA Axial Force = -1727.1 Fttm:=125000psi D:=0.375in R:=.560in Paxial:= $\sqrt{1302^2 + 1404^2} \cdot 1.51bf$ Ftm:= $4 \cdot F_{tu} \cdot \frac{2 \cdot R - D}{2 \cdot R + 3 \cdot D}$ Fbr = 1.659×10^5 psi g:= 0.10in file:=0.5inthe:= $\frac{P_{axial}}{F_{br} \cdot D}$ t_{1b} = 0.046in the:=0.070in Mbending:= $P_{axial}\left(\frac{t_{1b}}{4} + \frac{g}{2} + \frac{t_{i1}}{8}\right)$ Mbending = $373.384in \cdot lbf$ MS:= $\frac{1070in \cdot lbf}{M_{bending}} - 1$ MS = 1.866

Figure 23 Trunnion and Shock mount clevis joints

11.3KA58T321600 Trunnion Support Assy

11.3.1 Shock mount clevis joint

This clevis joint is also pictured in Figure 23. A peak design load for the shock absorber is 2000 lbf.

 $\begin{array}{ll} F_{tu} \coloneqq 62000 \text{psi} & \text{D} \coloneqq 0.4375 \text{in} & \text{R} \coloneqq .50 \text{in} & \text{P}_{axial} \coloneqq 20001.51 \text{bf} \\ F_{br} \coloneqq 4 \cdot F_{tu} \cdot \frac{2 \cdot \text{R} - \text{D}}{2 \cdot \text{R} + 3 \cdot \text{D}} & F_{br} = 6.032 \times 10^4 \text{ psi} & \text{g} \coloneqq 0.3250 \text{in} & t_{il} \coloneqq 0.619 \text{in} \\ t_{1b} \coloneqq \frac{P_{axial}}{F_{br} \cdot \text{D}} & t_{1b} = 0.114 \text{in} & t_{1b} \coloneqq 0.150 \text{in} & \text{M}_{bending} \coloneqq P_{axial} \left(\frac{t_{1b}}{4} + \frac{g}{2} + \frac{t_{il}}{8}\right) \\ M_{bending} = 832.125 \text{in} \cdot 1bf & \text{MS} \coloneqq \frac{1700 \text{ in} \cdot 1bf}{M_{bending}} - 1 & \text{MS} = 1.043 \end{array}$

Figure 24 Shock upper clevis joint strength

11.4 KA58T321250 Shock Absorber

Figure 26 Digressive (compression) / Linear (rebound) shim stack

We see in Figure 27 that using digressive shims (Figure 26) can spread out the deceleration resulting in a lower peak, as compared to linear dampening without any preload threshold (as in Figure 10 on page 11). Using preloaded shims can let the bounce nearly stop at a position other than the normal static position and then over a period of several seconds it settles at the static position.

Figure 27 Landing response with preloaded shims

Figure 28 Air Shock 2.0 (1.24 shaft) dyno result

11.4.2 Oil level and initial gas pressure adjustments

Figure 29 Dyno result for 2.0 Fox Shox w/ preloaded comp shim stack

Figure 30 Fox 2.0 (0.625 dia shaft) compression dyno results

11.4.3 Dust and sand protection

The shafts on the shocks and actuator are protected from dirt and sand with rubber boots.

Figure 32 Protective accordion boots for shock and actuator

Spherical rod end type bearings are used on each end of the shock absorber and also at the strut lever hinge (Figure 14 on page 15). These type bearings have the outer TFE lined race preloaded tight around the inner steel ball. This tight fit helps to exclude dirt and sand from the bearing in dirty environments.

11.5 Drag Brace

Figure 33 Peak design stress in Aft Drag Brace

11.6 Retraction Actuator

Both actuator models, described in §10.5 on page 19, have the same 3000 lbf static hold capability, which is sufficient to hold the gear in the retracted position during flight.. Either speed actuator has

sufficient force to move the MLG for the 1g load conditions. Now if we need to retract the gear during a 2g pullup then the slower actuator (lower gearing) would be needed, unless the higher speed actuator was allowed to stall until the vertical acceleration subsided, and then the retraction would continue. I guess a wind gust could occasionally create a 2g pullup condition.

11.7 Material Properties

11.7.1 AISI 4130 Properties

Alloy [For specification see Tables 2.3.1.0(a) and (b)]	AISI 413 8630, an	60, 4135, nd 8735	See steels listed in Table 2.3.0.2 for the applicable strength levels							
Form	Sheet, str tubi	ip, plate, ing	All wrought forms							
Condition	N	1		Quer	nched a	nd tem	pered ^a	· .		
Thickness or diameter, in	≤0.187	> 0.187		5	See Tab	ole 2.3.0).2			
Basis	s	s	s	s	s	s	s	s		
Mechanical Properties:										
$F_{n\nu}$, ksi	95	-90	125	140	150	160	180	200		
$F_{\rm by}$, ksi	75	70	100	120	132	142	163	176		
F_{cy} , ksi	75	70	109	131	145	154	173	181		
F_{su} , ksi	57	75	84	90	96	108	120			
F _{bru} , KSI:			104	200	210	220	250	272		
$(e/D = 1.5) \dots \dots \dots$	2000	100	194.	209	219	230	250	255		
$(c/D = 2.0) \dots \dots \dots$	200	190	251	215	287	300	520	335		
r_{bny} , KSI:			146	172	190	202	220	255		
$(e/D = 1.5) \dots \dots \dots$	120	120	175	203	218	202	256	280		
$(e/D = 2.0) \dots \dots$	129	120	175	205	210	231	250	200		
<i>e</i> , percent	See Table	2.3.1.0(d)	See Table 2.3.1.0(e)							
$E. 10^3$. ksi			29.0							
$E_{\rm o}, 10^3$ ksi				29.0						
$G, 10^3, \text{ ksi}$				11.0						
μ				0.32						
Physical Properties:						P				
rhysical rioperties.				0.283						
C K and a			See F	Simre 2	310					
			0001	igure 2						

^aValues in these columns are applicable only to steels for which the indicated F_{tu} has been substantiated through adequate quality-control inspection testing.

Figure 34 AISI 4130 Properties

Temper	T73	T7351												
Thickness, in	0.040- 0.249	0.250- 0.499	0.5 1.0	00- 00	1.0 1.5	01- 00	1.5 2.0	01- 00	2.0 2.5	01- 00	2.5 3.0	01- 00	3.001- 3.500	3.501- 4.000
Basis	S	S	Α	в	Α	в	А	в	А	В	Α	в	S	S
Mechanical Properties:														
F. ksi:												1.11		
L	67	68	68	70	67	69	66	68	65	67	63	65	62	60
LT	67	69	69	71	68	70	67	69	66	68	64c	66	63	61
ST	, ŭi						63	65	62	64	60	62	59	57
Fr., ksi:									02			°-		
L.	56	57	57	59	57	59	55	57	52	55	49	53	49	48
LT	56	57	57	59	57	59	55	57	52b	55	49c	53	49	48
ST							52	54	49	52	47	50	47	46
For ksi:										02				
L	55	56	56	58	56	58	53	55	50	53	47	51	47	45
LT	58	59	59	61	59	61	57	59	54	57	51	55	51	50
ST							59	61	55	58	51	55	50	48
F. ksi	38	38	38	39	38	40	39	40	39	40	38	39	38	37
Fhana ksi													1	
(e/D = 1.5)	105	102	103	106	103	106	102	106	102	105	100	103	99	96
(e/D = 2.0)	134	131	132	136	132	136	132	136	131	135	128	132	127	124
Fbrya, ksi:				100										
(e/D=1.5)	84	79	81	83	83	86	82	85	79	83	76	81	76	76
(e/D=2.0)	102	95	97	100	99	102	97	101	93	99	89	96	89	88
e, percent (S-basis):				1 - A	1									
LT	8	7	7		6		6		6		6		6	6
E, 10 ³ ksi	10.2					-		10.9						
E. 103 kei	10.5							10.3						
G 103 kej	10.5	1						10.6						
G, 10° R51	3,9							3.9						
	0.33							0.33	1	-				
Physical Properties:	1													
rnysical Properties:							0	101						
(a) lh/in 3	1						0.1	101						

11.7.2 Aluminum 7075-T7351 Properties

Figure 35 Aluminum 7075-T7351 Properties